Sommaire
cours / présentation, animation, exercice, autoévaluation
Mathématiques L1 : Etude locale d'une fonction
Il s'agit d'approximer, le mieux possible, une fonction par un polynôme au voisinage d'un point. Elle permet d'étudier des positions relatives de courbes autour d'un point, de détecter des extrema locaux, de calculer des limites, etc.
Cette leçon permet de :
1) connaître les théorèmes du cours (t...
Date de création :
01-12-2009Auteur(s) :
Odile BRANDIEREPrésentation
Informations pratiques
Langue du document : Français
Type : cours / présentation, animation, exercice, autoévaluation
Temps d'apprentissage : 3 heures
Niveau : licence, bac+1
Langues : Français
Contenu : ressource interactive
Public(s) cible(s) : apprenant
Document : Document HTML, Document Flash, Document PDF
Droits d'auteur : pas libre de droits, gratuit
Creative Commons (BY NC)
Creative Commons (BY NC)
Description de la ressource
Résumé
Il s'agit d'approximer, le mieux possible, une fonction par un polynôme au voisinage d'un point. Elle permet d'étudier des positions relatives de courbes autour d'un point, de détecter des extrema locaux, de calculer des limites, etc. Cette leçon permet de : 1) connaître les théorèmes du cours (théorème des accroissements finis et formule de Taylor) ; 2) maîtriser les techniques et méthodes de développements limités exposées dans le cours et savoir les appliquer correctement.
- Granularité : grain
- Structure : hiérarchique
"Domaine(s)" et indice(s) Dewey
- Analyse (515)
Domaine(s)
- Analyse
- Analyse
- Analyse
Informations pédagogiques
- Proposition d'utilisation : Il est bon de savoir les développements limités de base (encadré du cours), mais ils seront donnés à l'examen.
- Activité induite : s'auto-former, s'évaluer
Informations techniques
-
Navigateur web : any
- Configuration conseillée : Nécessite Adobe Flash Player.
Intervenants, édition et diffusion
Intervenants
Créateur(s) de la métadonnée : Odile Brandière
Validateur(s) de la métadonnée : Anne-Sophie Keller
Édition
- Université Paris-Sud
- AUNEGE
Diffusion
Document(s) annexe(s)
- Cette ressource fait partie de
Fiche technique
Identifiant de la fiche : http://www.aunege.fr/uid/aunege-171
Identifiant OAI-PMH : oai:aunege.fr:aunege-171
Statut de la fiche : final
Schéma de la métadonnée : oai:uved:Cemagref-Marine-Protected-Areas
- LOMv1.0
- LOMFRv1.0
- SupLOMFRv1.0
- Voir la fiche XML
Entrepôt d'origine : AUNEGE