
Sommaire
Self-Supervised Visual Learning and Synthesis
Date de création :
28.11.2019Auteur(s) :
Alexei A. EfrosPrésentation
Informations pratiques
Droits réservés à l'éditeur et aux auteurs.
Description de la ressource
Résumé
Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this talk, I will present several case studies exploring the paradigm of self-supervised learning — using raw data as its own supervision. Several ways of defining objective functions in high-dimensional spaces will be discussed, including the use of General Adversarial Networks (GANs) to learn the objective function directly from the data. Applications of self-supervised learning will be presented, including colorization, on/off-screen source separation, image forensics, paired and unpaired image-to-image translation (aka pix2pix and cycleGAN), and curiosity-based exploration.
"Domaine(s)" et indice(s) Dewey
- Infographie (006.6)
- Processing modes--computer science--multimedia-systems programs, . . . (006.787)
- machine learning (006.31)
Domaine(s)
- Informatique
- Multimédia : infographie, outils et techniques de programmation, synthèse vocale
- Imagerie
- Compression et codage, synthèse d'images
- Informatique
- Informatique
Intervenants, édition et diffusion
Intervenants
Édition
- INRIA (Institut national de recherche en informatique et automatique)
Diffusion
Document(s) annexe(s)
Fiche technique
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML